# Ox Close Federation <br> Maths Medium Term Planning <br> Year 5 

| Autumn |  |  |  |  | Vocabulary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Topic | Suggested teaching weeks | White Rose Small Steps | Link to National Curriculum and $\mathbf{N}$-Rich Problem Solving | Link to Ready to Progress documents |  |
| Number Place Value | 3 weeks | Step 1 Roman numerals to 1,000 <br> Step 2 Numbers to 10,000 <br> Step 3 Numbers to 100,000 <br> Step 4 Numbers to 1,000,000 <br> Step 5 Read and write numbers to 1,000,000 <br> Step 6 Powers of 10 <br> Step 7 10/100/1,000/10,000/100,000 <br> more or less Step 8 Partition numbers to 1,000,000 <br> Step 9 Number line to 1,000,000 <br> Step 10 Compare and order numbers to 100,000 Step 11 Compare and order numbers to $1,000,000$ Step 12 Round to the nearest 10,100 or 1,000 Step 13 Round within 100,000 Step 14 Round within 1,000,000 | read, write, order and compare numbers to at least 1000000 and determine the value of each digit <br> - count forwards or backwards in steps of powers of 10 for any given number up to 1000000 <br> - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero <br> - round any number up to 1 000000 to the nearest 10, $100,1000,10000$ and 100 000 <br> - solve number problems and practical problems that involve all of the above <br> - read Roman numerals to 1000 (M) and recognise years written in Roman numerals <br> Tug Harder! (G) * | 5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 . <br> 5NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth). | Powers of 10, 11,000,000, Negative integer |


| Number Addition and subtraction | 2 weeks | Step 1 Mental strategies <br> Step 2 Add whole numbers with more than four digits <br> Step 3 Subtract whole numbers with more than four digits <br> Step 4 Round to check answers <br> Step 5 Inverse operations (addition and subtraction) <br> Step 6 Multi-step addition and subtraction problems <br> Step 7 Compare calculations <br> Step 8 Find missing numbers | add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) <br> - add and subtract numbers mentally with increasingly large numbers <br> - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy <br> - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. |  | Formal written method |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number Multiplication and division | 3 weeks | Step 1 Multiples <br> Step 2 Common multiples <br> Step 3 Factors <br> Step 4 Common factors <br> Step 5 Prime numbers <br> Step 6 Square numbers <br> Step 7 Cube numbers <br> Step 8 Multiply by 10, 100 and 1,000 <br> Step 9 Divide by 10, 100 and 1,000 <br> Step 10 Multiples of 10, 100 and 1,000 | - identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers <br> - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers <br> - establish whether a number up to 100 is prime and recall prime numbers up to 19 <br> - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers | 5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size. <br> 5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors. <br> 5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice. | long multiplication, expanded method, compact method, remainders, factor pairs, composite number, prime number, prime factors, square number, cubed number, formal written method, square root |


|  |  |  | - multiply and divide numbers mentally drawing upon known facts <br> - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context <br> - multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 <br> recognise and use square numbers and cube numbers, and the notation for squared ( 2 ) and cubed (3) <br> - solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates. <br> Shape Times Shape * Zios and Zepts * Satisfying Four Statements |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number Fractions A | 4 weeks | Step 1 Find fractions equivalent to a unit fraction Step 2 Find fractions equivalent to a non-unit fraction | - compare and order fractions whose denominators are all | 5F-1 Find non-unit fractions of quantities. | Proper fractions, improper fractions, mixed number Percentage, per |

Step 3 Recognise equivalent fractions Step 4 Convert improper fractions to mixed numbers
Step 5 Convert mixed numbers to improper fractions
Step 6 Compare fractions less than 1
Step 7 Order fractions less than 1
Step 8 Compare and order fractions greater than 1
Step 9 Add and subtract fractions with the same denominator
Step 10 Add fractions within 1
Step 11 Add fractions with total greater than 1 Step 12 Add to a mixed number
Step 13 Add two mixed numbers
Step 14 Subtract fractions
Step 15 Subtract from a mixed number
Step 16 Subtract from a mixed number -
breaking the whole
Step 17 Subtract two mixed numbers
multiples of the same number

- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write
mathematical statements > 1 as a mixed number [for example, $52+54=56=1$ 51 ]
- add and subtract fractions with the same denominator and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

Fractional Wall *
cent, half, quarter, one fifth, two fifths, etc. proportion of

| Spring |  |  |  |  | Vocabulary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Topic | Suggested teaching weeks | White Rose Small Steps | Link to National Curriculum | Link to Ready to Progress documents |  |
| Number Multiplication and division B | 3 weeks | Step 1 Multiply up to a 4-digit number by a 1 -digit number Step 2 Multiply a 2-digit number by a 2-digit number (area model) <br> Step 3 Multiply a 2 -digit number by a 2-digit number <br> Step 4 Multiply a 3-digit number by a 2-digit number <br> Step 5 Multiply a 4-digit number by a 2-digit number <br> Step 6 Solve problems with multiplication <br> Step 7 Short division <br> Step 8 Divide a 4-digit number by a 1-digit number <br> Step 9 Divide with remainders <br> Step 10 Efficient division <br> Step 11 Solve problems with multiplication and division | - identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers <br> - know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers <br> - multiply and divide numbers mentally drawing upon known facts <br> - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10,100 and 1000 recognise and use square numbers and cube numbers, and the notation for squared ( <br> 2 ) and cubed (3) <br> - solve problems involving multiplication and division | 5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size. <br> 5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors. <br> 5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method. <br> 5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method. | Formal written method |


|  |  |  | including using their knowledge of factors and multiples, squares and cubes <br> - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign <br> - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number Fractions B | 2 weeks | Step 1 Multiply a unit fraction by an integer <br> Step 2 Multiply a non-unit fraction by an integer Step 3 Multiply a mixed number by an integer Step 4 Calculate a fraction of a quantity Step 5 Fraction of an amount Step 6 Find the whole Step 7 Use fractions as operators | - compare and order fractions whose denominators are all multiples of the same number <br> - identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths <br> - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $52+5$ $4=56=151$ ] <br> - add and subtract fractions with the same denominator and denominators that are multiples of the same number <br> - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams <br> Linked Chains * <br> A4 Fraction Subtraction * | 5F-3 Recall decimal fraction equivalents for , , and , and for multiples of these proper fractions. | Proper fractions, improper fractions, mixed number Percentage, per cent, half, quarter, one fifth, two fifths, etc. proportion of |


| Number Decimals and percentages | 3 weeks | Step 1 Decimals up to 2 decimal places <br> Step 2 Equivalent fractions and decimals (tenths) Step 3 Equivalent fractions and decimals (hundredths) <br> Step 4 Equivalent fractions and decimals <br> Step 5 Thousandths as fractions <br> Step 6 Thousandths as decimals <br> Step 7 Thousandths on a place value chart <br> Step 8 Order and compare decimals (same number of decimal places) Step 9 Order and compare any decimals with up to 3 decimal places Step 10 Round to the nearest whole number <br> Step 11 Round to 1 decimal place <br> Step 12 Understand percentages <br> Step 13 Percentages as fractions <br> Step 14 Percentages as decimals <br> Step 15 Equivalent fractions, decimals and percentages | - read and write decimal numbers as fractions [for example, $0.71=10071$ ] <br> - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents <br> - round decimals with two decimal places to the nearest whole number and to one decimal place <br> - read, write, order and compare numbers with up to three decimal places <br> - solve problems involving number up to three decimal places <br> - recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal <br> - solve problems which require knowing percentage and decimal equivalents of 21 , 41, 51,52,54 and those fractions with a denominator of a multiple of 10 or 25 . <br> Round the Dice Decimals 2 * |  | Tenths, hundredths, thousandths, round, decimal, percentage, parts per hundred, equivalent. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement Perimeter and area | 2 weeks | Step 1 Perimeter of rectangles <br> Step 2 Perimeter of rectilinear shapes <br> Step 3 Perimeter of polygons <br> Step 4 Area of rectangles <br> Step 5 Area of compound shapes <br> Step 6 Estimate area | - convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) • understand and use approximate equivalences between metric units and | 5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units. | Reflex angles, dimensions Regular, irregular, polygons, Composite rectilinear Translate Adjacent Angles at a point, whole turn, straight line, multiples of 90 |


|  |  |  | common imperial units such as inches, pounds and pints - measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres <br> - calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes <br> - estimate volume [for example, using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water] - solve problems involving converting between units of time <br> - use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Measurement Statistics | 1 weeks | Step 1 Draw line graphs <br> Step 2 Read and interpret line graphs <br> Step 3 Read and interpret tables <br> Step 4 Two-way tables <br> Step 5 Read and interpret timetables | - solve comparison, sum and difference problems using information presented in a line graph <br> - complete, read and interpret information in tables, including timetables. |  | Y-axis, $x$-axis, line graph, intersect |


| Summer |  |  |  |  | Vocabulary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Topic | Suggested teaching weeks | White Rose Small Steps | Link to National Curriculum | Link to Ready to Progress documents |  |
| Geometry Shape | 3 weeks | Step 1 Understand and use degrees <br> Step 2 Classify angles <br> Step 3 Estimate angles <br> Step 4 Measure angles up to $180^{\circ}$ <br> Step 5 Draw lines and angles accurately <br> Step 6 Calculate angles around a point <br> Step 7 Calculate angles on a straight line <br> Step 8 Lengths and angles in shapes <br> Step 9 Regular and irregular polygons Step 10 3-D shapes | - identify 3-D shapes, including cubes and other cuboids, from 2-D representations <br> - know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles <br> - draw given angles, and measure them in degrees (o ) <br> - identify: <br> - angles at a point and one whole turn (total 360o ) - angles at a point on a straight line and 21 a turn (total 180o ) <br> - other multiples of 90o <br> - use the properties of rectangles to deduce related facts and find missing lengths and angles <br> - distinguish between regular and irregular polygons based on reasoning about equal sides and angles. | 5G-1 Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size. <br> 5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units. | Reflex angles, dimensions Regular, irregular, polygons, Composite rectilinear Translate Adjacent Angles at a point, whole turn, straight line, multiples of 90 |
| Geometry Position and direction | 2 weeks | Step 1 Read and plot coordinates <br> Step 2 Problem solving with coordinates <br> Step 3 Translation <br> Step 4 Translation with coordinates <br> Step 5 Lines of symmetry <br> Step 6 Reflection in horizontal and vertical lines | - identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed. |  | Line graph, timetable, interpret |
| Number Decimals | 3 weeks | Step 1 Use known facts to add and subtract decimals within 1 <br> Step 2 Complements to 1 | - read and write decimal numbers as fractions [for example, $0.71=10071$ ] • | 5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1 . Know | Decimals, tenths, hundredths, decimal place, complements |


|  |  | Step 3 Add and subtract decimals across 1 <br> Step 4 Add decimals with the same number of decimal places <br> Step 5 Subtract decimals with the same number of decimal places <br> Step 6 Add decimals with different numbers of decimal places <br> Step 7 Subtract decimals with different numbers of decimal places <br> Step 8 Efficient strategies for adding and subtracting decimals <br> Step 9 Decimal sequences <br> Step 10 Multiply by 10,100 and 1,000 <br> Step 11 Divide by 10, 100 and 1,000 <br> Step 12 Multiply and divide decimals <br> - missing values | recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents <br> - round decimals with two decimal places to the nearest whole number and to one decimal place - read, write, order and compare numbers with up to three decimal places <br> - solve problems involving number up to three decimal places <br> - recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal <br> - solve problems which require knowing percentage and decimal equivalents of 21,41 $, 51,52,54$ and those fractions with a denominator of a multiple of 10 or 25 . | that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 . <br> 5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and nonstandard partitioning. <br> 5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number Negative numbers | 1 week | Step 1 Understand negative numbers <br> Step 2 Count through zero in 1s <br> Step 3 Count through zero in multiples <br> Step 4 Compare and order negative numbers <br> Step 5 Find the difference | - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero |  | Negative numbers, difference |
| Measurement Converting units | 2 weeks | Step 1 Kilograms and kilometres Step 2 Millimetres and millilitres Step 3 Convert units of length | - convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; |  | Kilometre, metre, gram, kilogram, litre, millilitre, inches, pounds, pints, seconds, minutes, hours. |


|  |  | Step 4 Convert between metric and <br> imperial units Step 5 Convert units of <br> time <br> Step 6 Calculate with timetables | gram and kilogram; litre and <br> millilitre) <br> - understand and use <br> approximate equivalences <br> between metric units and <br> common imperial units such as <br> inches, pounds and pints <br> - solve problems involving <br> converting between units of <br> time |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Measurement <br> Volume | $\mathbf{1}$ week | Step 1 Cubic centimetres <br> Step 2 Compare volume <br> Step 3 Estimate volume <br> Step 4 Estimate capacity | - calculate and compare the <br> area of rectangles (including <br> squares), and including using <br> standard units, square <br> centimetres (cm2) and square <br> metres (m2) and estimate the <br> area of irregular shapes <br> - estimate volume [for <br> example, using 1 cm3 blocks <br> to build cuboids (including <br> cubes)] and capacity [for <br> example, using water] | Volume, imperial units, <br> metric units, inches, pints, <br> pounds, cubic units, bredth, <br> interior area |  |

